
Polynesian Seas

Jeffrey Popek
EDG-220
Project 2 Team 1
Sprint 4

Table of Contents

Delivery Platform 2

Development Environment 2
Unity 2
Git 2
Google Drive 3
Audacity 4
Photoshop and Procreate 4
Visual Studio 5

Logical Flow Diagram 6

Game Mechanics and Systems 7
Menus 7
Movement 8
Shaders 9
Dialogue 9
NPCs 10

Pipelines 11
Art Pipeline 11

Creating the Art 11
Implementation 11

Audio Pipeline 12
Finding Audio 12
Editing Audio 12
Implementation 12

Design Pipeline 13
Design Stage 13
In Engine 13

Implementation 13

Sprint Updates 14
Sprint 1 - Game Concepts 14
Sprint 2 - Digital Prototype 15
Sprint 3 - Continue Digital Prototype 16
Sprint 4 - Complete Digital Prototype 16

1

Delivery Platform

Our game, GAME NAME, will be played on any device that can use a
mouse and keyboard and run unity games. Our game is mainly
aimed at PC players.

Development Environment

Unity
Our game was developed in the Unity Engine because of our team’s
experience with the engine and also the amount of documentation
available online. Unity allows us to easily build our game and let a
wide range of players play our game. Unity is also easily accessible
for each role in our team. We are using Unity version 2021.3.17f.

Git
Our team will use git for version control because it is supported by
Redmine. Most of the team was somewhat experienced with using
git from previous projects. Applications such as GitKraken or

2

GitBash will help simplify the version control process for less
experienced git users.

Google Drive
Our team uses Google Drive to store and create documentation
before finalizing it to be submitted to Redmine. Google Drive is
easily accessible to everyone in the team and Champlain gives
students a large amount of storage to use for projects. Google Drive
also allows each team member to easily access and edit any existing
documents for easy collaboration. We can also use redmine’s macros
to show our documents directly in the wiki.

3

Audacity
Since we do not have a sound designer for this project we are using
Audacity to edit sounds. Audacity is the best option for our team
because it is easily accessible and free.

Photoshop and Procreate
Our artists use Photoshop and Procreate to create and edit their art.
Both of these programs help the artist make creating and
implementing art as easy as possible.

4

Visual Studio
Our Programmer used visual studio 2022 to create scripts for the
game. Visual studio is our best choice because it is easily accessible
and worked well with unity.

5

Logical Flow Diagram

6

Game Mechanics and Systems

Menus
Our game does not center around menus so it would just be to make
the game feel more cohesive. The main menu would be relatively
simple and not have any mechanics. There would be the title of our
games, a play button and a quit button. Each button will have a
sound effect when clicking. The most difficult part of this would be
creating the art assets for the menus.

Risk: Low

7

Movement
The movement of our game is a simple top down styled movement.
The player can use the WASD keys to maneuver around the scene.
The player’s movement speed increases as they move until they
reach their max speed. The player can increase their max speed
through talking to a specific NPC (Fetu on Samoa). The player will
rotate in the direction they are moving. The player will have an arrow
to point in the direction of the next island. This arrow was
implemented because of feedback regarding the difficulty of
navigation. The arrow will appear only when the player is far enough
away from any island. The most difficult part of movement would be
getting the navigation arrow.

Risk: Low

8

Shaders
The setting of our game is on the ocean, so we naturally want to
have an ocean background. We will be using unity’s built in shader
support such as URP to create a shader of the water. The most
difficult part of this would be learning how to use it and
implementing it into our game.

Risk: High

Dialogue
Our game is centered around navigating so getting directions from
dialogue is essential. Dialogue is one of the core mechanics of our
game so we wanted it to be flexible and easy to implement. You can
respond with buttons in the UI. The player will be able to ask
predetermined questions and give predetermined answers to the

9

NPC’s dialogue. The most difficult part of this would be
programming it into unity.

Risk: Moderate

NPCs
Our game will have NPCs which are represented as islands around
the map. When the player is within their radius an indicator will
appear telling them they can talk to the NPC by pressing the interact
key (E). When pressing the interact button the player will be frozen in
place and start talking to an NPC. If the player has their notebook
open then it will automatically close when entering dialogue with an
NPC. The player cannot open their notebook while in dialogue. You
can give responses to the NPC by clicking on response buttons. The
most difficult part of implementing this feature would be the
creation of art assets to fit the theme.

Risk: Moderate

10

Pipelines

Art Pipeline

Creating the Art
Our two artists will create their art in a default photoshop or
Procreate template, it can be scaled down later if necessary.

Implementation
1. Have the art you want to add to the repo ready in the correct

format. (.png)
2. Pull the git repo to make sure your project is up to date. If you

have any git issues stop and contact the programmer unless
you know exactly what the issue is.

11

3. Copy your file(s) into the project folder Assets/Sprites. There
are a few different folders so pick one that fits the type of art
you are adding (there is Environment, UI, and NPC).

4. Once the art is in you can commit and push to the repo.

Audio Pipeline

Finding Audio
Since we have no sound designer for this project we will find all our
audio online. Anyone can look for audio and put it into the shared
drive folder.

Editing Audio
Once a sound is found we will determine whether it needs to be
edited or not. If so we will bring it into Audacity where we can edit it.

Implementation
1. Have the sound(s) you want to add to the repo ready in the

correct format. (.wav)
2. Pull the git repo to make sure your project is up to date. If you

have any git issues stop and contact the programmer unless
you know exactly what the issue is.

3. Copy your file(s) into the project folder Assets/Sounds. There
are a few different folders so pick one that fits the type of art
you are adding (there is Environment, UI, and NPC).

4. Once the sound(s) are in you can commit and push to the repo.

12

Design Pipeline

Design Stage
First our designers will come up with an idea and get it written down.
Next they will discuss with the team if the idea is in scope or not. If it
is then they can begin to polish the idea and ask the artists or the
programmer for any additional tools.

In Engine
We want the designers to have an easy time creating our map so we
will be using prefabs. Prefabs allow our designers to drag and drop
premade assets into the scene and still be able to change small
aspects. The prefabs will be created by the programmers with the
input from the designers and the artists.

Implementation

1. When you have an idea you want implemented you must first
run it through the team first to see if it is possibly in scope for
this project.

2. If in scope then the programmers and artists will begin to
create assets. If the idea is out of scope you can scrap it or try
and rework it to be in scope, repeat from step one when
reworking your ideas.

3. Pull the git repo to make sure your project is up to date. If you
have any git issues stop and contact the programmer unless
you know exactly what the issue is.

4. Find out from your programmers and artists what tools and
assets were created to implement your idea.

5. Create your design in the scene and save it as a prefab.
6. Commit and push to repo.

13

Sprint Updates

Sprint 1 - Game Concepts
Deliverables

- Game Build
- A small prototype of our game.

- Visual Design Document

- A Guide for our game’s mechanics.

- Game Loop Flow Chart
- Explains the flow of our game and how each action would

lead to the next.

- Game Concept Document
- Explains the concept of our game in detail.

- Art Concept Document

- Six Possible art directions for our game to go in.

- Sound Concept Document
- Explains what the sound of our game would be.

- Audience Development Document

- Explains who our game will be targeted towards.

Goals for next Sprint

- Maintain documentation
- Have a working digital prototype to show the game’s core

mechanics.

14

Sprint 2 - Digital Prototype
Deliverables

- Game Build
- A working prototype of our game showing off the core

mechanics.

- Updated Documentation
- Maintained each of our documents from the previous

sprint.

- Finalized Documentation
- Finalized documents that do not need to be iterated

anymore.

- Visual Design Guide
- Explains how our game will play out and what it takes to

get something implemented.

- Art Document
- Decided on one art direction to take our game in and put

it into a document.

- Testing Plan
- Team prepares to have our game tested in the GTL with

documentation and a prototype.

Goals for next Sprint

- Maintain documentation.
- Continue working on digital prototype.
- Have our game tested at the GTL.

15

Sprint 3 - Continue Digital Prototype
Deliverables

- Game Build
- A working prototype of our game showing off the core

mechanics.

- Updated Documentation
- Maintained each of our documents from the previous

sprint.

- Finalized Documentation
- Finalized documents that do not need to be iterated

anymore.
- Implementing Art

- Artists implement art into game.

Goals for next Sprint

- Maintain documentation.
- Have a completed digital prototype.
- Have our game tested at the GTL.

Sprint 4 - Complete Digital Prototype

Deliverables
- Game Build

- A final version of our game with all mechanics completed
and playable.

16

- Finalized Documentation
- Maintained and completed each of our documents from

the previous sprint.

17

	Delivery Platform
	Development Environment
	Unity
	Git
	Google Drive
	Audacity
	Photoshop and Procreate
	Visual Studio

	Logical Flow Diagram
	
	
	Game Mechanics and Systems
	Menus
	
	Movement
	Shaders
	
	Dialogue
	NPCs

	Pipelines
	Art Pipeline
	Creating the Art
	Implementation

	Audio Pipeline
	Finding Audio
	Editing Audio
	Implementation

	Design Pipeline
	Design Stage
	In Engine

	Implementation

	Sprint Updates
	Sprint 1 - Game Concepts
	Sprint 2 - Digital Prototype
	
	Sprint 3 - Continue Digital Prototype
	Sprint 4 - Complete Digital Prototype

